I’m doing a practice problem for Computational Geometry and would like some clarification on how to solve this

part of a question:

For each n > 3, find a polygon with n vertices with exactly two triangulations.

In other words, find a generic family of examples of n-gons, each having exactly two triangulations, such that it is clear that your family includes arbitrarily large n-gons – e.g., we have seen the family of convex n-gons, Chvatal combs (which were defined for multiples of 3, n = 3k, but extend to values of n not divisible by 3), etc.

One example is to take the” fox” example ( a “pseudotrinand?” having exactly 3 conver verticesand (n- 3 ) reflex vertices thatform a single refler chain ( one pocket…

## Place this order or similar order and get an amazing discount. USE Discount code “GET20” for 20% discount